714 research outputs found

    A tunable rf SQUID manipulated as flux and phase qubit

    Full text link
    We report on two different manipulation procedures of a tunable rf SQUID. First, we operate this system as a flux qubit, where the coherent evolution between the two flux states is induced by a rapid change of the energy potential, turning it from a double well into a single well. The measured coherent Larmor-like oscillation of the retrapping probability in one of the wells has a frequency ranging from 6 to 20 GHz, with a theoretically expected upper limit of 40 GHz. Furthermore, here we also report a manipulation of the same device as a phase qubit. In the phase regime, the manipulation of the energy states is realized by applying a resonant microwave drive. In spite of the conceptual difference between these two manipulation procedures, the measured decay times of Larmor oscillation and microwave-driven Rabi oscillation are rather similar. Due to the higher frequency of the Larmor oscillations, the microwave-free qubit manipulation allows for much faster coherent operations.Comment: Proceedings of Nobel Symposium "Qubits for future quantum computers", Goeteborg, Sweden, May 25-28, 2009; to appear in Physica Script

    Tunable Flux Qubit manipulated by fast pulses: operating requirements, dissipation and decoherence

    Full text link
    A double SQUID manipulated by fast magnetic flux pulses can be used as a tunable flux qubit. In this paper we study the requirements for the qubit operation, and evaluate dissipation and decoherence due to the manipulation for a typical system. Furthermore, we discuss the possibility to use an integrated Rapid Single Flux Quantum logic for the qubit control.Comment: 6 pages, 4 figure

    Dynamical Behavior of a Squid Ring Coupled to a Quantized Electromagnetic Field

    Full text link
    In this paper we investigate the dynamical behavior of a SQUID ring coupled to a quantized single-mode electromagnetic field. We have calculated the eigenstates of the combined fully quantum mechanical SQUID-field system. Interesting phenomena occur when the energy difference between the usual symmetric and anti-symmetric SQUID states equals the field energy . We find the low-energy lying entangled stationary states of the system and demonstrate that its dynamics is dominated by coherent Rabi oscillations.Comment: 6 pages, 2 figures. to be published on International Journal of Modern Physics

    Fujita modified exponent for scale invariant damped semilinear wave equations

    Get PDF
    The aim of this paper is to prove a blow-up result of the solution for a semilinear scale invariant damped wave equation under a suitable decay condition on radial initial data. The admissible range for the power of the nonlinear term depends both on the damping coefficient and on the pointwise decay order of the initial data. In addition, we give an upper bound estimate for the lifespan of the solution. It depends not only on the exponent of the nonlinear term and not only on the damping coefficient but also on the size of the decay rate of the initial data

    Resonant effects in a SQUID qubit subjected to non adiabatic changes

    Get PDF
    By quickly modifying the shape of the effective potential of a double SQUID flux qubit from a single-well to a double-well condition, we experimentally observe an anomalous behavior, namely an alternance of resonance peaks, in the probability to find the qubit in a given flux state. The occurrence of Landau-Zener transitions as well as resonant tunneling between degenerate levels in the two wells may be invoked to partially justify the experimental results. A quantum simulation of the time evolution of the system indeed suggests that the observed anomalous behavior can be imputable to quantum coherence effects. The interplay among all these mechanisms has a practical implication for quantum computing purposes, giving a direct measurement of the limits on the sweeping rates possible for a correct manipulation of the qubit state by means of fast flux pulses, avoiding transitions to non-computational states.Comment: 6 pages and 6 figures. The paper, as it is, has been accepted for publication on PRB on March 201

    Study of the Fabrication Process for a Dual Mass Tuning Fork Gyro

    Get PDF
    AbstractThe fabrication process of a dual mass tuning for gyroscope presents many different challenges: the aspect ratio of the sidewalls, the Aspect Ratio Dependent Etch (ARDE) which causes different gaps to be etched in different etching time [1], the stiction during the release of the free structures, the notching effect that occurs with a dielectric etch stop layer [2], the thermal contact during the etch process. In this paper are presented different processes and studies of the etching characteristics in order to avoid or minimize these problems
    • …
    corecore